63 research outputs found

    Dynamics of biologically informed neural mass models of the brain

    Get PDF
    This book contributes to the development and analysis of computational models that help brain function to be understood. The mean activity of a brain area is mathematically modeled in such a way as to strike a balance between tractability and biological plausibility. Neural mass models (NMM) are used to describe switching between qualitatively different regimes (such as those due to pharmacological interventions, epilepsy, sleep, or context-induced state changes), and to explain resonance phenomena in a photic driving experiment. The description of varying states in an ordered sequence gives a principle scheme for the modeling of complex phenomena on multiple time scales. The NMM is matched to the photic driving experiment routinely applied in the diagnosis of such diseases as epilepsy, migraine, schizophrenia and depression. The model reproduces the clinically relevant entrainment effect and predictions are made for improving the experimental setting.Die vorliegende Arbeit stellt einen Beitrag zur Entwicklung und Analyse von Computermodellen zum Verständnis von Hirnfunktionen dar. Es wird die mittlere Aktivität eines Hirnareals analytisch einfach und dabei biologisch plausibel modelliert. Auf Grundlage eines Neuronalen Massenmodells (NMM) werden die Wechsel zwischen Oszillationsregimen (z.B. durch pharmakologisch, epilepsie-, schlaf- oder kontextbedingte Zustandsänderungen) als geordnete Folge beschrieben und Resonanzphänomene in einem Photic-Driving-Experiment erklärt. Dieses NMM kann sehr komplexe Dynamiken (z.B. Chaos) innerhalb biologisch plausibler Parameterbereiche hervorbringen. Um das Verhalten abzuschätzen, wird das NMM als Funktion konstanter Eingangsgrößen und charakteristischer Zeitenkonstanten vollständig auf Bifurkationen untersucht und klassifiziert. Dies ermöglicht die Beschreibung wechselnder Regime als geordnete Folge durch spezifische Eingangstrajektorien. Es wird ein Prinzip vorgestellt, um komplexe Phänomene durch Prozesse verschiedener Zeitskalen darzustellen. Da aufgrund rhythmischer Stimuli und der intrinsischen Rhythmen von Neuronenverbänden die Eingangsgrößen häufig periodisch sind, wird das Verhalten des NMM als Funktion der Intensität und Frequenz einer periodischen Stimulation mittels der zugehörigen Lyapunov-Spektren und der Zeitreihen charakterisiert. Auf der Basis der größten Lyapunov-Exponenten wird das NMM mit dem Photic-Driving-Experiment überein gebracht. Dieses Experiment findet routinemäßige Anwendung in der Diagnostik verschiedener Erkrankungen wie Epilepsie, Migräne, Schizophrenie und Depression. Durch die Anwendung des vorgestellten NMM wird der für die Diagnostik entscheidende Mitnahmeeffekt reproduziert und es werden Vorhersagen für eine Verbesserung der Indikation getroffen

    Fast-slow bursters in the unfolding of a high codimension singularity and the ultra-slow transitions of classes

    Full text link
    Bursting is a phenomenon found in a variety of physical and biological systems. For example, in neuroscience, bursting is believed to play a key role in the way information is transferred in the nervous system. In this work, we propose a model that, appropriately tuned, can display several types of bursting behaviors. The model contains two subsystems acting at different timescales. For the fast subsystem we use the planar unfolding of a high codimension singularity. In its bifurcation diagram, we locate paths that underly the right sequence of bifurcations necessary for bursting. The slow subsystem steers the fast one back and forth along these paths leading to bursting behavior. The model is able to produce almost all the classes of bursting predicted for systems with a planar fast subsystems. Transitions between classes can be obtained through an ultra-slow modulation of the model's parameters. A detailed exploration of the parameter space allows predicting possible transitions. This provides a single framework to understand the coexistence of diverse bursting patterns in physical and biological systems or in models.Comment: 22 pages, 15 figure

    Selective activation of resting state networks following focal stimulation in a connectome- based network model of the human brain

    Full text link
    Imaging studies suggest that the functional connectivity patterns of resting state networks (RS-networks) reflect underlying structural connectivity (SC). If the connectome constrains how brain areas are functionally connected, the stimulation of specific brain areas should produce a characteristic wave of activity ultimately resolving into RS-networks. To systematically test this hypothesis, we use a connectome-based network model of the human brain with detailed realistic SC. We systematically activate all possible thalamic and cortical areas with focal stimulation patterns and confirm that the stimulation of specific areas evokes network patterns that closely resemble RS-networks. For some sites, one or no RS-network is engaged, whereas for other sites more than one RS-network may evolve. Our results confirm that the brain is operating at the edge of criticality, wherein stimulation produces a cascade of functional network recruitments, collapsing onto a smaller subspace that is constrained in part by the anatomical local and long-range SCs. We suggest that information flow, and subsequent cognitive processing, follows specific routes imposed by connectome features, and that these routes explain the emergence of RS-networks. Since brain stimulation can be used to diagnose/treat neurological disorders, we provide a look-up table showing which areas need to be stimulated to activate specific RS-networks.Comment: 25 pages (in total), 7 figures, 2 table

    Heterogeneity of time delays determines synchronization of coupled oscillators

    Get PDF
    Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations

    Linking Molecular Pathways and Large-Scale Computational Modeling to Assess Candidate Disease Mechanisms and Pharmacodynamics in Alzheimer's Disease

    Get PDF
    Introduction: While the prevalence of neurodegenerative diseases associated with dementia such as Alzheimer's disease (AD) increases, our knowledge on the underlying mechanisms, outcome predictors, or therapeutic targets is limited. In this work, we demonstrate how computational multi-scale brain modeling links phenomena of different scales and therefore identifies potential disease mechanisms leading the way to improved diagnostics and treatment. Methods: The Virtual Brain (TVB; thevirtualbrain.org) neuroinformatics platform allows standardized large-scale structural connectivity-based simulations of whole brain dynamics. We provide proof of concept for a novel approach that quantitatively links the effects of altered molecular pathways onto neuronal population dynamics. As a novelty, we connect chemical compounds measured with positron emission tomography (PET) with neural function in TVB addressing the phenomenon of hyperexcitability in AD related to the protein amyloid beta (Abeta). We construct personalized virtual brains based on an averaged healthy connectome and individual PET derived distributions of Abeta in patients with mild cognitive impairment (MCI, N = 8) and Alzheimer's Disease (AD, N = 10) and in age-matched healthy controls (HC, N = 15) using data from ADNI-3 data base (http://adni.loni.usc.edu). In the personalized virtual brains, individual Abeta burden modulates regional Excitation-Inhibition balance, leading to local hyperexcitation with high Abeta loads. We analyze simulated regional neural activity and electroencephalograms (EEG). Results: Known empirical alterations of EEG in patients with AD compared to HCs were reproduced by simulations. The virtual AD group showed slower frequencies in simulated local field potentials and EEG compared to MCI and HC groups. The heterogeneity of the Abeta load is crucial for the virtual EEG slowing which is absent for control models with homogeneous Abeta distributions. Slowing phenomena primarily affect the network hubs, independent of the spatial distribution of Abeta. Modeling the N-methyl-D-aspartate (NMDA) receptor antagonism of memantine in local population models, reveals potential functional reversibility of the observed large-scale alterations (reflected by EEG slowing) in virtual AD brains. Discussion: We demonstrate how TVB enables the simulation of systems effects caused by pathogenetic molecular candidate mechanisms in human virtual brains
    corecore